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Abstract	and	Keywords

This	chapter	addresses	the	problem	in	applied	mathematics	and	physics	concerning	the	behavior	of	materials	that
display	radically	different,	dominant	behaviors	at	different	length	scales.	It	offers	strategies	for	upscaling	from
theories	or	models	at	small	scales	to	those	at	higher	scales,	and	discusses	the	philosophical	consequences	of
having	to	consider	structures	that	appear	at	scales	intermediate	between	the	micro	and	the	macro.	The	chapter
also	considers	why	the	Navier-Cauchy	equations	for	isotropic	elastic	solids	work	so	well	in	describing	the	bending
behavior	of	steel	beams	at	the	macroscale.
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1.	Introduction

In	this	essay	I	will	focus	on	a	problem	in	physics	and	applied	mathematics.	This	is	the	problem	of	modeling	across
scales.	Many	systems,	say	a	steel	girder,	manifest	radically	different,	dominant	behaviors	at	different	length	scales.
At	the	scale	of	meters,	we	are	interested	in	its	bending	properties,	its	buckling	strength,	etc.	At	the	scale	of
nanometers	or	smaller,	it	is	composed	of	many	atoms,	and	features	of	interest	include	lattice	properties,	ionic
bonding	strengths,	etc.	To	design	advanced	materials	(such	as	certain	kinds	of	steel),	materials	scientists	must
attempt	to	deal	with	physical	phenomena	across	10+	orders	of	magnitude	in	spatial	scales.	According	to	a	recent
(2006)	NSF	research	report,	this	“tyranny	of	scales”	renders	conventional	modeling	and	simulation	methods
useless	as	they	are	typically	tied	to	particular	scales	(Oden	2006,	p.	29).	“Confounding	matters	further,	the
principal	physics	governing	events	often	changes	with	scale,	so	the	models	themselves	must	change	in	structure
as	the	ramifications	of	events	pass	from	one	scale	to	another”	(Oden,	pp.	29–30).	Thus,	even	though	we	often
have	good	models	for	material	behaviors	at	small	and	large	scales,	it	is	often	hard	to	relate	these	scale-based
models	to	each	other.	Macroscale	models	represent	the	integrated	effects	of	very	subtle	factors	that	are	practically
invisible	at	the	smallest,	atomic,	scales.	For	this	reason	it	has	been	notoriously	difficult	to	model	realistic	materials
with	a	simple	bottom-up-from-the-atoms	strategy.	The	widespread	failure	of	that	strategy	forced	physicists
interested	in	overall	macro-behavior	of	materials	toward	completely	top-down	modeling	strategies	familiar	from
traditional	continuum	mechanics.

A	response	to	the	problem	of	the	“tyranny	of	scales”	would	attempt	to	exploit	our	rather	rich	knowledge	of
intermediate	micro-	(or	meso-)	scale	behaviors	in	a	manner	that	would	allow	us	to	bridge	between	these	two
dominant	methodologies.	Macroscopic	scale	behaviors	often	fall	into	large	common	classes	of	behaviors	such	as
the	class	of	isotropic	elastic	solids,	characterized	by	two	phenomenological	parameters—so-called	elastic	moduli.
Can	we	employ	knowledge	of	lower	scale	behaviors	to	understand	this	universality—to	determine	the	moduli	and	to
group	the	systems	into	classes	exhibiting	similar	behavior?	This	is	related	to	engineering	concerns	as	well:	Can	we
employ	our	smaller	scale	knowledge	to	better	design	systems	for	optimal	macroscopic	performance
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characteristics?

The	great	hope	that	has	motivated	a	lot	of	recent	research	into	so-called	“homogenization	theory”	arises	from	a
conviction	that	a	“between-scales”	point	of	view,	such	as	that	developed	by	Kadanoff,	Fisher,	and	Wilson	in	the
renormalization	group	approach	to	critical	phenomena	in	fluids	and	magnets,	may	very	well	be	the	proper
methodological	strategy	with	which	to	begin	to	overcome	the	tyranny	of	scales.	A	number	of	philosophers	have
recently	commented	on	the	renormalization	group	theory,	but	I	believe	their	focus	has	overlooked	what	is	truly
novel	about	the	methodological	perspective	that	the	theory	employs.

Philosophical	discussions	of	the	applicability	of	mathematics	to	physics	have	not,	in	my	opinion,	paid	sufficient
attention	to	contemporary	work	on	this	problem	of	modeling	across	scales.	In	many	instances,	philosophers	hold
on	to	some	sort	of	ultimate	reductionist	picture:	whatever	the	fundamental	theory	is	at	the	smallest,	basic	scale,	it
will	be	sufficient	in	principle	to	tell	us	about	the	behavior	of	the	systems	at	all	scales.	Continuum	modeling	on	this
view	represents	an	idealization—as	Feynman	has	said,“a	smoothed-out	imitation	of	a	really	much	more
complicated	microscopic	world”	(Feynman,	Leighton,	and	Sands	1964,	p.	12).	Furthermore,	the	suggestion	is	that
such	models	are	in	principle	eliminable.

There	is	a	puzzle	however.	Continuum	model	equations	such	as	the	Navier-Stokes	equations	of	hydrodynamics	or
the	equations	for	elastic	solids	work	despite	the	fact	that	they	completely	(actually,	almost	completely—this	is
crucial	to	the	discussion	below)	ignore	small	scale	or	atomistic	details	of	various	fluids.	The	recipe	(I	call	it	“Euler's
continuum	recipe”)	by	which	we	construct	continuum	models	is	safe:	if	we	follow	it,	we	will	most	always	be	led	to
empirically	adequate	successful	equations	characterizing	the	behavior	of	systems	at	the	macroscopic	level.	Why?
What	explains	the	safety	of	this	recipe?	Surely	this	requires	an	answer.	Surely,	the	answer	must	have	something	to
do	with	the	physics	of	the	modeled	systems	at	smaller	scales.	If	such	an	answer	cannot	be	provided,	we	will	be	left
with	a	kind	of	skepticism:	without	such	an	answer,	we	cannot	expect	anything	like	a	unified	conception	of	applied
mathematics'	use	of	continuum	idealizations. 	If	an	answer	is	forthcoming,	then	we	have	to	face	the	reductionist
picture	mentioned	above.	Will	such	an	answer—an	answer	that	explains	the	robustness	and	safety	of	employing
continuum	modeling—support	the	view	that	continuum	models	are	mere	conveniences,	only	pragmatically	justified,
given	the	powerful	simplifications	gained	by	replacing	large	but	finite	systems	with	infinite	systems?	As	noted,	many
believe	that	a	reductionist/eliminitivist	picture	is	the	correct	one.	I	maintain	that	even	if	we	can	explain	the	safety
and	robustness	of	continuum	modeling	(how	this	can	be	done	is	the	focus	of	this	essay),	the	reductionist	picture	is
mistaken.

It	is	a	mistaken	picture	of	how	science	works.	My	focus	here	is	on	a	philosophical	investigation	that	is	true	to	the
actual	modeling	practices	of	scientists.	(I	am	not	going	to	be	addressing	issues	of	what	might	be	done	in	principle,	if
not	in	practice.)	The	fact	of	the	matter	is	that	scientists	do	not	model	the	macroscale	behaviors	of	materials	using
pure	bottom-up	techniques. 	I	suggest	that	much	philosophical	confusion	about	reduction,	emergence,	atomism,
and	antirealism	follows	from	the	absolute	choice	between	bottom-up	and	top-down	modeling	that	the	tyranny	of
scales	apparently	forces	upon	us.	As	noted,	recent	work	in	homogenization	theory	is	beginning	to	provide	much
more	subtle	descriptive	and	modeling	strategies.	This	new	work	calls	into	question	the	stark	dichotomy	drawn	by
the	“do	it	in	a	completely	bottom-up	fashion”	folks	and	those	who	insist	that	top-down	methods	are	to	be	preferred.

The	next	section	discusses	the	proposal	that	the	use	of	continuum	idealizations	present	no	particular	justificatory
worries	at	all.	Recent	philosophical	literature	has	focused	on	the	role	of	continuum	limits	in	understanding	various
properties	of	phase	transitions	in	physical	systems	such	as	fluids	and	magnets.	Some	authors,	particularly	Jeremy
Butterfield	(2011)	and	John	Norton	(2011),	have	expressed	the	view	that	there	are	no	particularly	pressing	issues
here:	the	use	of	infinite	limits	is	perfectly	straightforwardly	justified	by	appeal	to	pragmatic	considerations.	I	argue
that	this	view	misses	an	important	difference	in	methodology	between	some	uses	of	infinite	limits	and	those	used	by
renormalization	group	arguments	and	homogenization	theory.

In	section	3,	I	present	an	interesting	historical	example	involving	nineteenth	century	attempts	to	derive	the	proper
equations	governing	the	behavior	of	elastic	solids	and	fluids.	A	controversy	raged	throughout	that	century
concerning	the	merits	of	starting	from	bottom-up	atomic	description	of	various	bodies	in	trying	to	arrive	at
empirically	adequate	continuum	equations.	It	turns	out	that	the	bottom-up	advocates	lost	the	debate.	Correct
equations	apparently	could	only	be	achieved	by	eschewing	all	talk	of	atomic	or	molecular	structure,	advocating
instead	a	top-down	approach	supplemented,	importantly,	with	experimentally	determined	data.	In	section	4,	I
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formulate	the	tyranny	of	scales	as	the	problem,	just	mentioned,	of	trying	to	understand	the	connection	between
recipes	for	modeling	at	atomic	scales	(Euler's	discrete	recipe)	and	Euler's	continuum	recipe	appropriate	for
continuum	models.	Finally,	I	present	a	general	discussion	of	work	on	homogenization	that	provides	at	least	the
beginning	of	an	answer	to	the	safety	question	and	to	the	problem	of	bridging	scales	between	the	atomic	and	the
continuum.	This	research	can	be	seen	as	allaying	skeptical	worries	about	a	unified	applied	mathematical
methodology	regarding	the	use	of	continuum	idealizations	of	a	certain	kind.

2.	Steel	Beams,	Scales,	Scientific	Method

Let	us	consider	the	steel	girder	in	a	bit	more	detail.	In	many	engineering	applications	steel	displays	linear	elasticity.
This	is	to	say	that	it	obeys	Hooke's	Law—its	strain	is	linearly	proportional	to	its	stress.	One	phenomenological
parameter	related	to	its	stress/strain	(i.e.,	stiffness)	properties	is	Young's	modulus	appearing	in	the	equations	of
motion	for	solids,	as	well	as	in	equilibrium	and	variational	equations.	At	scales	of	1	meter	to	10	meters,	say,	the
steel	girder	appears	to	be	almost	completely	homogeneous:	zooming	in	with	a	small	microscope	will	reveal	nothing
that	looks	much	different.	In	fact,	there	appears	to	be	a	kind	of	local	scale	invariance	here. 	So	for	behaviors	that
take	place	within	this	range	of	scales,	the	steel	girder	is	well-modeled	or	represented	by	the	Navier-Cauchy
equations:	(1)

The	parameters	λ	and	μ	are	the	“Lamé”	parameters	and	are	related	to	Young's	modulus.

Now	jump	from	this	large-scale	picture	of	the	steel	to	its	smallest	atomic	scale.	Here	the	steel,	for	typical
engineering	purposes,	is	an	alloy	that	contains	iron	and	carbon.	At	this	scale,	the	steel	exhibits	highly	ordered
crystalline	lattice	structures.	It	looks	nothing	like	the	homogeneous	girder	at	the	macroscales	that	exhibits	no
crystalline	structure.	Somehow	between	the	lowest	scale	of	crystals	on	a	lattice	and	the	scale	of	meters	or
millimeters,	the	low-level	ordered	structures	must	disappear.	But	that	suggests	that	properties	of	the	steel	at	its
most	basic,	atomic	level	cannot,	by	themselves,	determine	what	is	responsible	for	the	properties	of	the	steel	at
macroscales.	I	will	discuss	this	in	more	detail	below.

In	fact,	the	story	is	remarkably	complex.	It	involves	appeal	to	various	geometrical	properties	that	appear	at
microscales	intermediate	between	the	atomic	and	the	macro, 	as	well	as	a	number	of	other	factors	such	as
martensitic	transformations. 	The	symmetry	breaking	is	effected	by	a	combination	of	point	defects,	line	defects,	slip
dislocations,	and	higher	dimensional	wall	defects	that	characterize	interfacial	surfaces.	All	of	these	contribute	to
the	homogenization	of	the	steel	we	see	and	manipulate	at	the	macroscale.	And,	of	course,	in	engineering	contexts
the	macro	features	(bending	properties,	for	example)	are	the	most	important—we	do	not	want	our	buildings	or
bridges	to	collapse.

2.1	Reduction,	Limits,	Continuum	Models

A	simpler	case	than	steel	involves	trying	to	connect	the	finite	statistical	mechanical	theory	of	a	fluid	at	the	atomic
scale	to	the	thermodynamic	continuum	theory	at	macro	scales. 	The	relationship	between	statistical	mechanics
and	thermodynamics	has	received	a	lot	of	attention	in	the	recent	philosophical	literature.	Debates	about
intertheoretic	reduction,	its	possibility,	and	its	nature	have	all	appealed	to	examples	from	thermodynamics	and
statistical	mechanics.	Many	of	these	discussions,	in	the	recent	literature,	have	focused	on	the	nature	and	potential
emergence	of	phase	transitions	in	the	so-called	thermodynamic	limit 	(Butterfield	2011a;	Menon	and	Callender
2012;	Belot	2005;	Bangu	2009).	What	role	does	the	thermodynamic	limit	play	in	connecting	theories?	What	role
does	it	play	in	understanding	certain	particular	features	of	thermodynamic	systems?	It	will	be	instructive	to
consider	the	role	of	this	limit	in	a	more	general	context	than	that	typical	of	the	literature.	This	is	the	context	in	which
we	consider	the	generic	problem	of	upscaling	from	atomic	to	laboratory	scales,	as	in	the	case	of	the	steel	girder
discussed	above.	In	doing	this,	I	hope	it	will	become	clear	that	many	of	the	recent	philosophical	discussions	miss
crucial	features	of	the	methodology	of	applying	limits	like	the	thermodynamic	limit.

Before	turning	to	the	debates	about	the	use	of	the	thermodynamic	limit	and	the	justification	of	using	infinite	limits	to
understand	the	goings	on	in	finite	systems,	I	think	it	is	worthwhile	to	step	back	to	consider,	briefly,	some	general
issues	about	theory	reduction.	As	mentioned	above,	many	philosophers	and	physicists	tacitly	(and	sometimes
explicitly)	maintain	some	sort	of	in	principle	reductionist	point	of	view.	I	do	not	deny	that	maybe	in	some	as	yet	to

4

6

7

8

9



The Tyranny of Scales

Page 4 of 23

be	articulated	sense	there	may	be	an	in	principle	bottom-up	story	to	be	told.	However,	appeals	to	this	possibility
ignore	actual	practices	and	furthermore	are	never	even	remotely	filled	out	in	any	detail.	Typically	the	claim	is
simply:	“The	fundamental	theory	(whatever	it	is,	quantum	mechanics,	quantum	field	theory,	etc.),	because	it	is
fundamental	(whatever	that	ultimately	means),	must	be	able	to	explain/reduce	everything.”

Nagel's	seminal	work	(1961)	considered	the	reduction	of	thermodynamics	to	statistical	mechanics	to	be	a
straightforward	and	paradigm	case	of	intertheoretic	reduction.	On	his	view,	as	is	well	known,	one	derives	the
thermodynamic	laws	from	the	laws	of	statistical	mechanics	employing	so-called	bridge	laws	connecting
terms/predicates	appearing	in	the	reduced	theory	with	those	appearing	in	the	reducing	theory. 	In	several	places
I	have	argued	that	this	Nagelian	strategy	and	its	variants	fail	for	many	cases	of	so-called	reduction	(Batterman
1995,	2002).	I	have	argued	that	a	limiting	sense	of	reduction	in	which,	say,	statistical	mechanics	“reduces	to”
thermodynamics	in	an	appropriate	limit	(if	it	does)	provides	a	more	fruitful	conception	of	intertheoretic	reduction
than	the	Nagelian	strategies	where	the	relation	seems	to	go	the	other	way	around:	on	the	Nagelian	strategies	one
has	it	that	thermodynamics	reduces	to	statistical	mechanics,	in	the	sense	of	deductive	derivation.	There	are	a
number	of	reasons	for	thinking	the	nonNagelian,	“limiting,”	sense	of	reduction	is	a	superior	sense	of	reduction.	For
one,	there	is	the	difficulty	of	finding	the	required	definitional	connections	that	the	bridge	laws	are	meant	to
embody. 	But	in	addition,	the	kinds	of	connections	established	between	theories	by	taking	limits	do	not	appear	to
be	expressible	as	definitional	extensions	of	one	theory	to	another.	In	many	cases,	the	limits	involved	are	singular,
and	even	when	they	are	not,	the	use	of	mathematical	limits	invokes	mathematics	well	beyond	that	expressible	in
the	language	of	first	order	logic—a	characteristic	feature	of	Nagel's	view	of	reduction	and	of	its	neoNagelian
refinements.

Despite	these	arguments	a	number	of	authors	have	recently	tried	to	argue	that	reduction	should	be	understood	in
Nagelian	terms;	that	is,	as	the	definitional	extension	of	one	theory	to	another.	Jeremy	Butterfield	and	Nazim	Bouatta,
for	example,

…take	reduction	as	a	relation	between	theories	(of	the	systems	concerned).	It	is	essentially	deduction;
though	the	deduction	is	usually	aided	by	adding	appropriate	definitions	linking	two	theories'	vocabularies.
This	will	be	close	to	endorsing	the	traditional	philosophical	account	[Nagel's],	despite	various	objections
levelled	against	it.	The	broad	picture	is	that	the	claims	of	some	worse	or	less	detailed	(often	earlier)	theory
can	be	deduced	within	a	better	or	more	detailed	(often	later)	theory,	once	we	adjoin	to	the	latter	some
appropriate	definitions	of	the	terms	in	the	former.	…So	the	picture	is,	with	D	standing	for	the	definitions:
T &D	⇒	T .	In	logicians'	jargon	T 	is	a	definitional	extension	of	T .	(Butterfield	and	Bouatta	2011)

In	the	current	context	the	more	basic,	better	theory	(statistical	mechanics)	is	T 	and	the	reduced,	tainted	theory
(thermodynamics)	is	T .

Butterfield	and	Bouatta	obviously	are	not	moved	by	the	objections	to	the	Nagelian	scheme	that	I	briefly	mentioned
above.	I	suggest	though,	as	we	delve	a	bit	more	deeply	into	the	examples	of	phase	transitions	and	of	the	steel
girder,	that	we	keep	in	mind	the	question	of	whether	the	continuum	account	of	the	bending	behavior	of	the	steel
can	be	reduced	to	the	theory	of	its	atomic	constituents	in	the	sense	that	we	can	derive	that	continuum	behavior
from	the	“better,”	“more	detailed,”	and	“later”	atomic	theory.	Even	if	we	extend	the	logicians'	sense	of	deduction
(as	definitional	extension)	beyond	that	of	first	order	logic	so	as	to	include	inferences	involving	mathematical	limits,
will	such	a	deduction/reduction	be	possible?

So	the	real	question,	as	both	of	these	examples	employ	continuum	limits,	concerns	why	the	use	of	such	limits	is
justified.	The	debate	about	the	justification	of	the	use	of	infinite	limits	and,	ultimately,	about	reduction	concerns
whether	the	appeal	to	limits	can	in	the	end	be	eliminated.	It	is	a	pressing	debate,	because	no	party	thinks	that	at
the	most	fundamental	level,	the	steel	girder	is	a	continuum.	And	no	party	thinks	that	a	tea	kettle	boiling	on	the	stove
contains	an	infinite	number	of	molecules.	What	justifies	our	employing	such	infinite	idealizations	in	describing	and
explaining	the	behaviors	of	those	systems?

For	Butterfield	there	is	a	“Straightforward	Justification”	for	the	use	of	infinite	limits	in	physical	modeling.

This	Justification	consists	of	two	obvious,	very	general,	broadly	instrumentalistic,	reasons	for	using	a	model
that	adopts	the	limit	N	=	∞:	mathematical	convenience,	and	empirical	adequacy	(up	to	a	required
accuracy).	So	it	also	applies	to	many	other	models	that	are	almost	never	cited	in	philosophical	discussions
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of	emergence	and	reduction.	In	particular,	it	applies	to	the	many	classical	continuum	models	of	fluids	and
solids,	that	are	obtained	by	taking	a	limit	of	a	classical	atomistic	model	as	the	number	of	atoms	N	tends	to
infinity	(in	an	appropriate	way,	e.g.	keeping	the	mass	density	constant).	(2011,	p.	1080)

He	continues	by	emphasizing	two	“themes”	common	to	the	use	of	many	different	infinite	models:

The	first	theme	is	abstraction	from	finitary	effects.	That	is:	the	mathematical	convenience	and	empirical
adequacy	of	many	such	models	arises,	at	least	in	part,	by	abstracting	from	such	effects.	Consider	(a)	how
transient	effects	die	out	as	time	tends	to	infinity;	and	(b)	how	edge/boundary	effects	are	absent	in	an
infinitely	large	system.

The	second	theme	is	that	the	mathematics	of	infinity	is	often	much	more	convenient	than	the	mathematics
of	the	large	finite.	The	paradigm	example	is	of	course	the	convenience	of	the	calculus:	it	is	usually	much
easier	to	manipulate	a	differentiable	real	function	than	some	function	on	a	large	discrete	subset	of	ℝ	that
approximates	it.	(2011,	p.	1081)

The	advantages	of	these	themes	are,	according	to	Butterfield,	twofold.	First,	it	may	be	easier	to	know	or	determine
the	limit's	value	than	the	actual	value	primarily	because	of	the	removal	of	boundary	and	edge	effects.	Second,	in
many	examples	of	continuum	modeling	we	have	a	function	defined	over	the	finite	collection	of	atoms	or	lattice	sites
that	oscillates	or	fluctuates	and	so	can	take	on	many	values.	In	order	to	employ	the	calculus	we	often	need	to
“have	each	value	of	the	function	defined	as	a	limit	(namely,	of	values	of	another	function)”	(pp.	1081–82).
Butterfield	seems	to	have	in	mind	the	standard	use	of	averaging	over	a	“representative	elementary	volume”
(REV) 	and	then	taking	limits	N	→	∞,	volume	going	to	zero,	so	as	to	identify	a	continuum	value	for	a	property	on
the	macroscale.	In	fact,	he	cites	continuum	models	of	solids	and	fluids	as	paradigm	examples:

For	example,	consider	the	mass	density	varying	along	a	rod,	or	within	a	fluid.	For	an	atomistic	model	of	the
rod	or	fluid,	that	postulates	N	atoms	per	unit	volume,	the	average	mass-density	might	be	written	as	a
function	of	both	position	x	within	the	rod	or	fluid,	and	the	side-length	L	of	the	volume	L 	centred	on	x,	over
which	the	mass	density	is	computed:	f(N,x,L).	Now	the	point	is	that	for	fixed	N,	this	function	is	liable	to	be
intractably	sensitive	to	x	and	L.	But	by	taking	a	continuum	limit	N	→	∞,	with	L	→	0	(and	atomic	masses
going	to	zero	appropriately	so	that	quantities	like	density	do	not	“blow	up”),	we	can	define	a	continuous,
maybe	even	differentiable,	mass-density	function	ρ(x)	as	a	function	of	position—and	then	enjoy	all	the
convenience	of	the	calculus.

So	much	by	way	of	showing	in	general	terms	how	the	use	of	an	infinite	limit	N	=	∞	can	be	justified—but	not
mysterious!	At	this	point,	the	general	philosophical	argument	of	this	paper	is	complete!	(p.	1082)

So	for	Butterfield	most	of	the	discussions	concerning	the	role,	and	particularly	the	justification,	of	the	use	of	the
thermodynamic	limit	in	the	debates	about	phase	transitions	have	generated	a	lot	of	hot	air.	The	justification,	on	his
view,	for	employing	such	limits	in	our	modeling	strategies	is	largely	pragmatic—for	the	sake	of	convenience.	In
addition,	there	is,	as	he	notes,	the	further	concern	that	the	use	of	such	limits	be	empirically	adequate—getting	the
phenomena	right	to	within	appropriate	error	bounds.	Much	of	his	discussion	concerns	showing	that	the	use	of	such
limits	can	most	always	be	shown	to	be	empirically	adequate	in	this	sense	(Butterfield	2011).	Unfortunately,	I	think
that	sometimes	things	are	more	subtle	than	the	straightforward	justification	admits.	In	fact,	there	are	good	reasons
to	think	that	the	use	of	the	thermodynamic	limit	in	the	context	of	the	renormalization	group	(RG)	explanation	of
critical	phenomena—one	of	the	cases	he	highlights—fails	to	be	justified	by	his	own	criteria.	It	is	a	different
methodology,	one	that	does	not	allow	for	the	sort	of	justificatory	story	just	told.	The	straightforward	story	as
described	above	cannot	be	told	for	the	RG	methodology	for	the	simple	reason	that	that	story	fails	to	be	empirically
adequate	in	those	contexts.

One	can	begin	to	understand	this	by	making	a	distinction	between	what	might	be	called	“ab	initio”	and	“post	facto”
computational	strategies.	Butterfield's	remarks	about	the	mass	density	in	a	rod	(say	a	steel	girder)	in	one	sense
appear	to	endorse	the	ab	initio	strategy.	Consider	a	model	of	the	rod	at	the	scale	of	atoms	where	the	atoms	lock
together	on	a	crystal	lattice.	The	limit	averaging	strategy	has	us	increase	the	size	of	the	lattice	until	we	have,	in
effect,	a	perfect	crystal	of	infinite	extent.	This	lets	us	ignore	boundary	effects	as	he	notes.	The	limiting	average
density	that	we	arrive	at	using	this	ab	initio	(atomic	only)	strategy	will	actually	be	grossly	incorrect	at	higher	scales.
This	is	because,	at	higher	micro	(meso)	scales	real	iron	contains	many	structures	such	as	dislocations,	grain
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boundaries,	and	other	metastabilities	that	form	within	its	mass	and	that	energetically	allow	local	portions	of	the
material	at	these	higher	scales	to	settle	into	stable	modes	with	quite	different	average	densities.	See	figure	7.1.
These	average	densities	will	be	quite	different	than	the	ab	initio	calculations	from	the	perfect	crystal.	What	special
features	hidden	within	the	quantum	chemistry	of	iron	bond	allow	those	structures	to	form?	We	really	don't	know.	But
until	we	gain	some	knowledge	of	how	those	structures	emerge,	we	will	not	be	able	accurately	to	determine
computationally	the	bulk	features	of	steel	girders	in	the	way	described.	Values	for	Young's	modulus	and	fracture
strength	that	we	may	try	determine	on	the	basis	of	this	ab	initio	reasoning	will	be	radically	at	variance	with	the
actual	measured	values	for	real	steel.

On	the	other	hand,	if	we	possessed	a	realistic	model	of	steel	at	all	length	scales,	then	we	could	conceivably	define
a	simple	average	over	a	representative	volume	(at	a	much	higher	scale	than	the	atomic).	But	this	post	facto
calculation	would	rely	upon	complete	data	about	the	system	at	all	scales.	No	limits	would	be	involved	whatsoever.
Perhaps	some	super	genius	may	someday	in	principle	propose	an	incredibly	detailed	model	of	iron	bonding	that
would	allow	the	calculation	of	the	macro	parameters	like	Young's	modulus	in	a	kind	of	ab	initio	mode	imagined	by
Butterfield,	but	such	a	hypothetical	project	is	certainly	not	the	aim	of	the	RG	techniques	that	are	under
consideration	here.

Figure	7.1 	Microstructures	of	steel

Such	ab	initio	calculations	provide	wrong	answers	because	they	cannot	“see”	the	energetically	allowed	local
structural	configurations	that	steel	manifests	at	larger	scales.	On	the	other	hand,	if	we	are	investigating	materials
that	(for	whatever	reason)	display	nice	scaling	relationships	across	some	range	of	scales	(as	steel	does	for	scales
8–10	orders	of	magnitude	above	the	atomic),	then	we	will	be	able	to	employ	RG	type	techniques	to	determine	the
various	universality	classes	(characterized	by	the	phenomenological	parameters—Young's	modulus,	e.g.)	into
which	they	must	fall.	Thus	the	RG	methodology,	unlike	the	ab	initio	REV	averaging	strategy,	provides	a	rationale	for
evading	extreme	bottom-up	computations	so	as	to	gain	an	understanding	of	why	steel,	for	example,	only	requires	a
few	effective	parameters	to	describe	its	behavior	at	macroscales.

While	there	surely	are	cases	in	which	averaging	is	appropriate,	and	the	straight-forward	justification	may	be
plausible,	there	are	other	cases,	as	I	have	been	arguing,	in	which	it	is	not.	In	order	to	further	elucidate	this	point,	I
will	say	a	bit	about	what	the	RG	argument	aims	to	do.	I	will	then	give	a	very	simple	example	of	why	one	should,	in
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many	instances,	expect	the	story	involving	averaging	over	a	representative	volume	element	(REV)	to	fail.	In	fact,
the	failure	of	this	story	is	effectively	the	motivation	behind	Wilson's	development	of	the	distinct	RG	methodology.
More	generally,	if	our	concern	is	to	understand	why	continuum	models	such	as	the	Navier-Cauchy	equation	are
safe	and	robust,	the	straightforward	justification	will	miss	what	is	most	crucial.

I	have	discussed	the	RG	in	several	publications	(Batterman	2002;	2005;	2011).	Butterfield	(2011)	and	Butterfield
and	Bouatta	(2011)	present	concise	descriptions	as	well.	For	the	purposes	here,	as	noted	earlier,	I	am	going	to
present	some	of	the	details	with	a	different	emphasis	than	these	other	discussions	have	provided.	In	particular,	I
want	to	stress	the	role	of	the	RG	as	part	of	a	methodology	for	upscaling	from	a	statistical	theory	to	a
hydrodynamic/continuum	theory.	In	so	doing,	I	follow	a	suggestion	of	David	Nelson	(2002,	pp.	3–4)	who	builds	on	a
paper	of	Ken	Wilson	(1974).	The	suggestion	is	that	entire	phases	of	matter	(not	just	critical	phenomena)	are	to	be
understood	as	determined	by	a	“fixed	point”	reflecting	the	fact	that	“universal	physical	laws	[are]	insensitive	to
microscopic	details”	(2002,	p.	3).	Specifically,	the	idea	is	to	understand	how	details	of	the	atomic	scale	physics	get
encoded	(typically)	into	a	few	phenomenological	parameters	that	appear	in	the	continuum	equations	governing	the
macroscopic	behavior	of	the	materials.	In	a	sense,	these	phenomenological	parameters	(like	viscosity	for	a	fluid,
and	Young's	modulus	for	a	solid)	characterize	the	appropriate	“fixed	point”	that	defines	the	class	of	material
exhibiting	universal	behavior	despite	potentially	great	differences	in	microscale	physics.

Let	us	consider	a	ferromagnet	modeled	as	a	set	of	classical	spins	σ 	on	a	lattice—the	Ising	model.	In	this	model,
neighboring	spins	tend	to	align	in	the	same	direction	(either	up	or	down:	σ 	=	±1).	Further,	we	might	include	the
effect	of	an	external	magnetic	field	B.	Then	the	Hamiltonian	for	the	Ising	model	is	given	by

with	the	first	sum	over	nearest	neighbor	pairs	of	spins,	μ	is	a	magnetic	moment.	A	positive	value	for	the	coupling
constant	J	reflects	the	fact	that	neighboring	spins	will	tend	to	be	aligned,	both	up	or	both	down.

Figure	7.2 	Spontaneous	magnetization	at	T

For	ferromagnets	we	can	define	an	order	parameter—a	function	of	the	net	magnetization	for	the	system—whose
derivative	exhibits	a	discontinuity	or	jump	at	the	so-called	critical	or	Curie	temperature,	T .	Above	T ,	in	zero
magnetic	field,	the	spins	are	not	correlated	due	to	thermal	fluctuations	and	so	the	net	magnetization	is	zero.	As	the
system	cools	down	to	the	Curie	temperature,	there	is	singularity	in	the	magnetization	(defined	as	a	function	of	the
free	energy).	(See	figure	7.2.)	The	magnetization	exhibits	power	law	behavior	near	that	singularity	characterized
by	the	relation

where	t	is	the	reduced	temperature	 .	It	is	a	remarkable	fact	that	physically	quite	distinct	systems—magnets
modeled	by	different	Hamiltonians,	and	even	fluids	(whose	order	parameter	is	the	difference	between	vapor	and
liquid	densities	in	a	container)—all	exhibit	the	same	power	law	scaling	near	their	respective	critical	points:	The
number	β	is	universal	and	characterizes	the	phenomenological	behavior	of	a	wide	class	of	systems	at	and	near
criticality.

The	RG	provides	an	explanation	for	this	universal	behavior;	and	in	particular,	it	allows	one	theoretically	to

i
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determine	the	value	for	the	exponent	β.	For	the	3-dimensional	Ising	model,	that	theoretical	value	is
approximately.33.	Experimentally	determined	values	for	a	wide	class	of	fluids	and	magnets	are	found	in	the
range.31–.36.	So-called	“mean	field”	calculations	predict	a	value	of	.5	for	β	(Wilson	1974,	p.	120).	A	major	success
of	the	RG	was	its	ability	to	correct	mean	field	theory	and	yield	results	in	close	agreement	with	experiment.	In	a
mean	field	theory,	the	order	parameter	M	is	defined	to	be	the	magnetic	moment	felt	at	a	lattice	site	due	to	the
average	over	all	the	spins	on	the	lattice.	This	averaging	ignores	any	large-scale	fluctuations	that	might	(and,	in
fact,	are)	present	in	systems	near	their	critical	points.	The	RG	corrects	this	by	showing	how	to	incorporate
fluctuations	at	all	length	scales,	from	the	atomic	to	the	macro,	that	play	a	role	in	determining	the	macroscopic
behavior	(specifically	the	power	law	dependence—M	α	\t\ )	of	the	systems	near	criticality.	In	fact,	near	criticality
the	lattice	system	will	contain	“bubbles”	(regions	of	correlated	spins—all	up	or	all	down)	of	all	sizes	from	the	atomic
to	the	system	size.	As	Kadanoff	notes,	“[f]rom	this	picture	we	conclude	that	critical	phenomena	are	connected	with
fluctuations	over	all	length	scales	between	ξ	[essentially	the	system	size]	and	the	microscopic	distance	between
particles”	(Kadanoff	1976,	p.	12).

So	away	from	criticality,	below	the	critical	temperature,	say,	the	lattice	systems	will	look	pretty	much
homogeneous. 	For	a	system	with	T	≪	T 	in	figure	7.2	we	would	have	relatively	large	correlated	regions	of	spins
pointing	in	the	same	direction.	There	might	be	only	a	few	insignificantly	small	regions	where	spins	are	correlated	in
the	opposite	direction.	This	is	what	is	responsible	for	there	being	a	positive,	nonzero,	value	for	M	at	that
temperature.	Now	suppose	we	were	interested	in	describing	a	large	system	like	this	away	from	criticality	using	the
continuum	limit	as	understood	by	Butterfield	above.	We	would	choose	a	representative	elementary	volume	of
radius	L	around	a	point	x.	The	volume	is	small	with	respect	to	the	system	size	ξ,	but	still	large	enough	to	contain
many	spins.	Next	we	would	average	the	quantity	M(N,x,L)	over	that	volume	and	take	the	limits	N	→	∞,	L	→	0	so	as
to	obtain	the	proper	continuum	value	and	so	that	we	would	be	able	to	model	the	actually	finite	collection	of	spins
using	convenient	continuum	mathematics.

But	near	the	critical	temperature	(near	T )	the	system	will	look	heterogeneous—exhibiting	a	complicated	mixture	of
two	distinct	phases	as	in	figure	7.3.	Now	we	face	a	problem.	In	fact,	it	is	the	problem	that	effectively	undermined
the	mean	field	approach	to	critical	phenomena.	The	averaging	method	employing	a	representative	elementary
volume	element	misses	what	is	most	important.	For	one	thing,	we	will	need	to	know	how	to	weight	the	different
phases	as	to	their	import	for	the	macroscopic	behavior	of	the	system.	In	other	words,	were	we	to	perform	the	REV
averaging,	all	of	the	physics	of	the	fluctuations	responsible	for	the	coexisting	bubbles	of	up	spins	and	bubbles	of
down	spins	would	be	ignored.

Here	is	a	simple	example	to	see	why	this	methodology	will	often	fail	for	heterogeneous	systems	(Torquato	2002,	p.
11).	Consider	a	composite	material	consisting	of	equal	volumes	of	two	materials,	one	of	which	is	a	good	electrical
conductor	and	one	of	which	is	not.	A	couple	of	possible	configurations	are	shown	in	figure	7.4.

Suppose	that	the	dark,	connected	phase	is	the	good	conductor.	If	we	were	to	proceed	using	the	REV	recipe,	then,
because	the	volume	fractions	are	the	same,	we	would	grossly	underestimate	the	bulk	conductivity	of	the	material
in	the	left	configuration	and	grossly	underestimate	its	bulk	insulating	capacities	in	the	right	configuration.	REV
averaging	treats	only	the	volume	fraction	and	completely	misses	microstructural	details	that	are	relevant	to	the
bulk	(macroscale)	behavior	of	the	material.	In	this	simple	example,	the	microstructural	feature	that	is	relevant	is	the
topological	connectedness	of	the	one	phase	vs.	the	other—that	is,	the	details	about	the	boundaries	between	the
two	phases.	Note	that	the	fact	that	boundaries	play	an	important	role	serves	to	undermine	the	first	“theme”	of	the
Straightforward	Justification	for	the	use	of	limits;	namely,	that	taking	the	limits	enable	us	to	remove	edge	and
boundary	effects.	To	the	contrary,	these	can	and	do	play	very	important	roles	in	determining	the	bulk	behavior	of
the	materials.

β
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Figure	7.3 	Bubbles	within	bubbles	within	bubbles	…(after	Kadanoff	1976,	pp.	11–12)

Figure	7.4 	50–50	volume	mixture

One	might	object	that	all	one	needs	to	do	to	save	the	REV	methodology	would	be	to	properly	weight	the con-
tribution	of	the	different	phases	to	the	overall	average.	But	this	is	not	something	that	one	can	do	a	priori	or through	
ab	initio	calculations	appealing	to	details	and	properties	of	the	individual	atoms	at	the	atomic	scale.	Even worse,	
note	the	partial	blobs	at	the	corners	marked	by	the	arrows	in	figure	7.4.	How	large	are	the	complete	blobs	of which	
they	are	a	part?	We	do	not	know	because	the	limited	scale	of	the	window	(size	L	of	the	REV)	does	not	allow us	to	
“see”	what	is	happening	at	large	scales.	It	is	entirely	possible	(and	in	the	case	of	critical	phenomena	actually the	
case)	that	these	partial	blobs	will	be	part	of	larger	connected	regions	only	visible	at	greater	scale	lengths.	They
may	be	dreaded	invaders	from	a	higher	scale. 	If	such	invaders	are	present,	then	we	have	another	reason	to	be
wary	of	limiting	REV	averaging	methods—we	will	grossly	fail	to	estimate	the	effective	conductivity	of	the	material	at
macroscales.	On	the	other	hand,	if	we	have	some	nice	scaling	data	about	the	behavior	of	material	of	the	sort
exploited	by	the	RG,	we	may	well	gain	enough	of	a	handle	on	the	material's	overall	behavior	to	place	its
conductivity	in	a	firm	universality	class	with	other	materials	that	scale	in	similar	ways.

As	noted	above,	in	more	complicated	situations,	such	as	the	steel	girder	with	which	we	began,	microstructural
features	include	mesoscale	dislocations,	defects	of	various	kinds,	and	martensitic	transformations.	If	we	engaged
in	a	purely	bottom-up	lattice	view	about	steel,	paying	attention	only	to	the	structures	for	the	pure	crystal	lattice,
then	we	would	get	completely	wrong	estimates	for	its	total	energy,	for	its	average	density,	and	for	its	elastic
properties.	The	relevant	Hamiltonians	require	terms	that	simply	do	not	appear	at	the	smallest	scales.

The	upshot,	then,	is	that	the	straightforward	justification	for	the	use	of	infinite	limits	will	miss	exactly	what	is
important	for	understanding	what	is	going	on	for	systems	at	and	near	criticality.	There,	they	no	longer	appear
homogeneous	across	a	large	range	of	scales.	If	we	are	to	try	to	connect	(and	thereby	extract)	correct phe-
nomenological	macroscopic	values	for	appropriate	parameters	(e.g.,	β)	we	need	to	consider	structures	that
exist	at	scales	greater	than	the	fundamental/basic/atomic.	Again,	what	does	this	say	about	the	prospects	for	an
overall	reductionist	understanding	of	the	physics	of	systems	viewed	at	macroscales?

The	RG	considers	such	intermediate	scales	by	including	in	the	calculations	the	effects	of	fluctuations	or equivalent-
ly,	the	fact	that	bubbles	within	bubbles	of	different	phases	appear	near	criticality.	We	need	methods	that tell	us	
how	to	homogenize	heterogeneous	materials.	In	other	words,	to	extract	a	continuum	phenomenology,	we need	a	
methodology	that	enables	us	to	upscale	models	of	materials	that	are	heterogeneous	at	small	scales	to those	that	
are	homogeneous	at	macroscales,	as	is	evidenced	by	the	fact	that	only	a	very	small	number	of phenomenological	
parameters	are	required	to	characterize	their	continuum	level	behaviors.	It	appears,	then,	that the	straightforward	
justification	of	the	use	of	continuum	limits	needs	to	be	reconsidered	or	replaced	in	those
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contexts	where	the	materials	of	interest	exhibit	heterogeneous	microstructures.

In	section	5	I	will	say	a	bit	more	about	the	nature	and	generality	of	this	different	methodology.	In	the	next	section,	I
present	a	historical	discussion,	one	aim	of	which	is	to	illustrate	that	this	debate	about	modeling	across	scales	is
not,	in	the	least	bit,	new.	Furthermore,	the	discussion	should	give	pause	to	those	who	think	continuum	models	are
ultimately	unnecessary.	This	is	the	story	of	deriving	appropriate	continuum	equations	for	the	behavior	of	elastic
solids	and	gave	rise	to	a	controversy	that	lasted	for	most	of	the	nineteenth	century.

3.	Bridging	across	Scales:	A	Historical	Controversy

Why	are	the	Navier-Stokes	equations	named	after	Navier	and	Stokes?	The	answer	is	not	as	simple	as	“they	both,
independently,	arrived	at	the	same	equation.”	In	fact,	there	are	differences	between	the	equation	Navier	first	came
up	with	and	that	derived	by	Stokes.	The	differences	relate	to	the	assumptions	that	each	employed	in	his	derivation,
but	more	importantly,	these	different	assumptions	actually	led	to	different	equations.	Furthermore,	the	difference
between	the	equations	was	symptomatic	of	a	controversy	that	lasted	for	most	of	the	nineteenth	century	(de	Boer
2000,	p.	86).

While	the	Navier-Stokes	equation	describes	the	behavior	of	a	viscous	fluid,	the	controversy	has	its	roots	in	the
derivation	of	equations	for	the	behavior	of	an	elastic	solid.	I	intend	to	focus	on	the	latter	equations	and	only	at	the
end	make	some	remarks	about	the	fluid	equations.

The	controversy	concerned	the	number	of	material	constants	that	were	required	to	describe	the	behavior	of	elastic
solids.	According	to	Navier's	equation,	a	single	constant	marked	a	material	as	isotropic	elastic.	According	to	Stokes
and	Green,	two	constants	were	required.	For	anisotropic	elastic	materials	(where	symmetries	cannot	be	employed)
the	debate	concerned	whether	the	number	of	necessary	constants	was	15	or	21.	This	dispute	between,
respectively,	“rari-constancy”	theorists	and	“multi-constancy”	theorists	depended	upon	whether	one's	approach
to	the	elastic	solid	equations	started	from	a	hypothesis	to	the	effect	that	solids	are	composed	of	interacting
molecules	or	from	the	hypothesis	that	solids	are	continuous.

Navier's	derivation	began	from	the	hypothesis	that	the	deformed	state	of	an	elastic	body	was	to	be	understood	in
terms	of	forces	acting	between	individual	particles	or	molecules	that	make	up	the	body.	Under	this	assumption,
he	derived	equations	containing	only	one	material	constant	ε.

Navier's	equations	for	an	elastic	solid	are	as	follows	(de	Boer	2000,	p.	80):	(2)

(3)

(4)

Here	ε,	Navier's	material	constant,	reflects	the	molecular	forces	that	are	supposed	to	turn	on	when	external	forces
are	applied	to	the	body.	x,	y,	z	are	the	coordinates	representing	the	location	of	a	material	point	in	the	body. 	u,
v,	w	are	the	displacement	components	in	the	directions	x,	y,	z;	X,	Y,	Z	represent	the	external	accelerations

(forces)	in	the	directions	x,	y,	z;	 	is	the	Laplace	operator;	 	is	the

volume	strain;	and	ρ	is	the	material	density.

Cauchy	also	derived	an	equation	for	isotropic	elastic	materials	by	starting	from	a	molecular	hypothesis	similar	to
Navier's.	However,	his	equation	contains	the	correct	number	of	material	constants	(two).	It	is	instructive	to	write
down	Cauchy's	equations	and	to	discuss	how,	essentially,	a	mistaken,	inconsistent	derivational	move	on	his	part
yielded	a	more	accurate	set	of	equations	than	Navier.
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Cauchy's	equations	for	an	elastic	solid	are	as	follows	(de	Boer	2000,	p.	81)	(compare	with	equation	(1)):	(5)

(6)

(7)

R,	A	are	the	two	material	constants.	Cauchy	noted,	explicitly,	that	when	A	=	0	his	equations	agree	with	Navier's
when	R	=	ε 	(de	Boer	2000,	p.	81).	How	did	Cauchy	arrive	at	a	different	equation	than	Navier,	despite	starting,
essentially,	from	the	same	molecular	assumptions	about	forces?	He	did	so	by	assuming	that,	despite	the	fact	that
he	is	operating	under	the	molecular	hypothesis,	he	can,	in	his	derivation	replace	certain	summations	by
integrations.	In	effect,	he	actually	employs	a	continuum	condition	contradictory	to	his	fundamental	starting
assumption.

George	Green,	in	1839,	published	a	study	that	arrived	at	the	correct	equations—essentially	(5)–(7)—by	completely
eschewing	the	molecular	hypothesis.	He	treated	the	entire	body	as	composed	of	“two	indefinitely	extended	media,
the	surface	of	junction	when	in	equilibrium	being	a	plane	of	infinite	extent.” 	He	also	assumed	that	the	material
was	not	crystalline	and,	hence,	isotropic.	Then	using	a	principle	of	the	conservation	of	energy/work	he	derived,
using	variational	principles	of	Lagrangian	mechanics,	his	multi-constant	equation.

Finally,	following	the	discussion	of	Todhunter	and	Pearson	(1960),	we	note	that	Stokes's	work	supported	the	multi-
constancy	theory	in	that	he	was	able	to	generalize	his	equations	for	the	behavior	of	viscous	fluids	to	the	case	of
elastic	solids	by	making	no	distinction	between	a	viscous	fluid	and	a	solid	undergoing	permanent—plastic—
deformation.	“He	in	fact	draws	no	line	between	a	plastic	solid	and	a	viscous	fluid.	The	formulae	for	the	equilibrium
of	an	isotropic	plastic	solid	would	thus	be	bi-constant”	(Todhunter	and	Pearson	1960,	p.	500).	This	unification	of
continuum	equations	lends	further	support	to	the	multi-constancy	theory.

The	historical	debate	represents	just	the	tip	of	the	iceberg	of	the	complexity	surrounding	both	theoretical	and
experimental	work	on	the	behavior	of	the	supposedly	simpler,	isotropic,	cases	of	elastic	solids.	Nevertheless,	the
multi-constancy	theory	wins	the	day	for	appropriate	classes	of	structures.	And,	derivations	that	start	from	atomic
assumptions	fail	to	arrive	at	the	correct	theory.	It	seems	that	here	may	very	well	be	a	case	where	a	continuum
point	of	view	is	actually	superior:	bottom-up	derivation	from	atomistic	hypotheses	about	the	nature	of	elastic	solid
bodies	fails	to	yield	correct	equations	governing	the	macroscopic	behavior	of	those	bodies.	There	are	good
reasons,	already	well	understood	by	Green	and	Stokes,	for	eschewing	such	reductionist	strategies.

This	controversy	is	important	for	the	current	project	for	the	following	reason.	Green	and	Stokes	were	moved	by	the
apparent	scaling	or	homogeneity	observed	in	elastic	solids	and	fluids.	That	is,	as	one	zooms	in	with	reasonable
powerful	microscopes	one	sees	the	steel	to	be	the	same	at	different	magnifications;	likewise	for	the	fluid.	Green
and	Stokes	then	extrapolated	this	scale	invariance	to	hold	at	even	larger	magnifications—at	even	smaller	scales.
We	now	know	(and	likely	they	suspected)	that	this	extrapolation	is	not	valid	beyond	certain	scale	lengths—the
atomistic	nature	of	the	materials	will	begin	to	show	itself.	Nevertheless,	the	continuum	modeling	was	dramatically
successful	in	that	it	predicted	the	correct	number	and	the	correct	character	of	the	phenomenological	constants.

De	Boer	reflects	on	the	reasons	for	why	this	controversy	lasted	so	long	and	was	so	heated:

Why	was	so	much	time	spent	on	molecular	theory	considerations,	in	particular,	by	the	most	outstanding
mechanics	specialists	and	mathematicians	of	the	epoch?	One	of	the	reasons	must	have	been	the
temptation	of	gaining	the	constitutive	relation	for	isotropic	and	anisotropic	elastic	continua	directly	from
pure	mathematical	studies	and	simple	mechanical	principles; 	It	was	only	later	realized	that	Hooke's
generalized	law	is	an	assumption,	and	that	the	foundation	of	the	linear	relation	had	to	be	supported	by
experiments.	(2000,	pp.86–87)
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The	upshot	of	this	discussion	is	reflected	in	de	Boer's	emphasis	that	the	constitutive	equations	or	special	force	laws
(Hooke's	law)	are	dependent,	for	their	very	form,	on	experimental	results.	So	a	simple	dismissal	of	continuum
theories	as	“in	principle”	eliminable,	as	reducible,	and	merely	pragmatically	justified,	is	mistaken.	Of	course,	the
phenomenological	parameters,	like	Young's	modulus	(related	to	Navier's	ε),	must	encode	details	about	the	actual
atomistic	structure	of	elastic	solids.	But	it	is	naive,	indeed,	to	think	that	one	can,	in	any	straightforward	way	derive
or	deduce	from	atomic	facts	what	are	the	phenomenological	parameters	required	for	continuum	model	of	a	given
material.	It	is	probably	even	more	naive	to	think	that	one	will	be	able	to	derive	or	deduce	from	those	atomic	facts
what	are	the	actual	values	for	those	parameters	for	a	given	material.

This	historical	discussion	and	the	intense	nineteenth-century	debate	between	the	rari-	and	multi-constancy
theorists	apparently	supports	the	view	that	there	is	some	kind	of	fundamental	incompatibility	between	small	scale
and	continuum	modeling	practices.	That	is,	it	lends	support	to	the	stark	choice	one	must	apparently	make	between
bottom-up	and	top-down	modeling	suggested	by	the	tyranny	of	scales.

A	modern,	more	nuanced,	and	better	informed	view	challenges	this	consequence	of	the	tyranny	of	scales	and	will
be	discussed	in	section	5.	However,	such	a	view	will	not,	in	my	opinion,	bring	much	comfort	to	those	who	believe
the	use	of	continuum	models	or	idealizations	is	only	pragmatically	justified.	A	modern	statement	supporting	this
point	of	view	can	be	found	in	(Phillips	2001):

[M]any	material	properties	depend	upon	more	than	just	the	identity	of	the	particular	atomic	constituents
that	make	up	the	material.…[M]icrostructural	features	such	as	point	defects,	dislocations,	and	grain
boundaries	can	each	alter	the	measured	macroscopic	“properties”	of	a	material.	(pp.	5–8)

It	is	important	to	reiterate	that,	contrary	to	typical	philosophical	usage,	“microstructural	features”	here	is	not
synonymous	with	“atomic	features”!	Defects,	dislocations,	etc.	exist	at	higher	scales.

In	the	next	section	I	will	further	develop	the	stark	dichotomy	between	bottom-up	modeling	and	top-down	modeling
as	a	general	philosophical	problem	arising	between	different	recipes	for	applying	mathematics	to	systems
exhibiting	different	properties	across	a	wide	range	of	scales.

4.	Euler's	Recipes:	Discrete	and	Continuum

4.1	Discrete

Applied	mathematical	modeling	begins	with	an	attempt	to	write	down	an	equation	governing	the	system	exhibiting
the	phenomenon	of	interest.	In	many	situations,	this	aim	is	accomplished	by	starting	with	a	general	dynamical
principle	such	as	Newton's	second	law:	F	=	ma.	Unfortunately,	this	general	principle	tells	us	absolutely	nothing
about	the	material	or	body	being	investigated	and,	by	itself,	provides	no	model	of	the	behavior	of	the	system.
Further	data	are	required	and	these	are	supplied	by	so-called	“special	force	laws”	or	“constitutive	equations.”

A	recipe,	due	to	Leonhard	Euler,	for	finding	an	appropriate	model	for	a	system	of	particles	proceeds	as	follows
(Wilson	1974):

1.	Given	the	class	of	material	(point	particles,	say),	determine	the	kinds	of	special	forces	that	act	between
them.	Massive	particles	obey	the	constitutive	gravitational	force:	 .	Charged	particles

additionally	will	obey	the	Coulomb	force	law:	 .

2.	Choose	Cartesian	coordinates	along	which	one	decomposes	the	special	forces.
3.	Sum	the	forces	acting	on	each	particle	along	the	appropriate	axis.
4.	Set	the	sum	for	each	particle	i	equal	to	 	to	yield	the	total	force	on	the	particle.

This	yields	a	differential	equation	that	we	then	employ	(=	try	to	solve)	to	further	understand	the	behavior	of	our
point	particle	system.	Only	rarely	(for	very	few	particles	or	for	special	symmetries)	will	this	equation	succumb	to
analytical	evaluation.	In	many	instances,	further	simplification	employing	mathematical	strategies	of	variable
reduction,	averaging,	etc.	enable	us	to	gain	information	about	the	behavior	of	interest.
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4.2	Continuum

As	we	saw	in	section	3,	Cauchy	had	a	role	in	the	derivation	of	equations	for	elastic	solids.	We	note	again	that	he
was	lucky	to	have	arrived	at	the	correct	equations,	given	that	he	started	with	a	bottom-up	derivation	in	mind.
Nevertheless,	Cauchy	was	an	important	figure	in	the	development	of	continuum	mechanics:	it	turns	out	that	at
macroscales,	forces	within	a	continuum	can	be	represented	by	a	single	second-rank	tensor,	despite	all	of	the
details	that	appear	at	the	atomic	level.	This	is	known	as	the	Cauchy	stress	tensor	(Philips	2001,	p.	39).	The	analog
of	Newton's	second	law,	for	continua	is	the	principle	of	balance	of	linear	momentum.	It	is	a	statement	that	“the	time
rate	of	change	of	the	linear	momentum	is	equal	to	the	net	force	acting	on	[a]	region	Ω”: 	(8)

Here	∂Ω	is	the	boundary	of	the	region	Ω,	t	is	the	traction	vector	representing	surface	forces	(squeezings,	for
instance),	and	f	represents	the	body	forces	such	as	gravity.	The	left-hand	side	of	equation	(8)	is	the	time	rate	of
change	of	linear	momentum.	The	material	time	derivative,	D/Dt,	is	required	because	in	addition	to	explicit	time
dependence	of	the	field,	we	need	to	consider	the	fact	that	the	material	itself	can	move	into	a	region	where	the	field
is	different.

As	with	Euler's	discrete	recipe,	equation	(8)	requires	input	from	constitutive	equations	to	apply	to	any	real	system.

Whether	our	interest	is	in	the	description	of	injecting	polymers	into	molds,	the	evolution	of	Jupiter's	red
spot,	the	development	of	texture	in	a	crystal,	or	the	formation	of	vortices	in	wakes,	we	must	supplement
the	governing	equations	of	continuum	mechanics	with	some	constitutive	description.	(Phillips	2001,	p.	51)

For	the	case	of	a	steel	girder,	considered	in	the	regime	for	use	in	constructing	bridges	or	buildings	we	need	the
input	that	it	obeys	something	like	Hooke's	law—that	its	stress	is	linearly	related	to	its	strain.	In	modern	terminology,
we	need	to	provide	data	about	the	Cauchy	stress	tensor.	For	isotropic	linear	elastic	solids,	symmetry
considerations	come	into	play	and	we	end	up	with	equation	(1)—the	Navier-Cauchy	equation	that	characterizes
the	equilibrium	states	of	such	solids:

The	“Lamé”	parameters	(related	to	Young's	modulus)	express	the	empirical	details	about	the	material	response	to
stress	and	strain.

4.3	Controversy

A	question	of	pressing	concern	is	why	the	continuum	recipe	should	work	at	all.	We	have	seen	in	the	historical
example	that	it	does,	and	in	fact,	we	have	seen	that	were	we	simply	to	employ	the	discrete	(point	particle)	recipe,
we	would	not	arrive	at	the	correct	results.	In	asking	why	the	continuum	recipe	works	on	the	macroscale,	we	are
asking	about	the	relationship	between	the	dynamical	models	that	track	the	behavior	of	individual	atoms	and
molecules	and	equations	like	those	of	Navier,	Stokes,	Cauchy,	and	Green	that	are	applicable	at	the	scale	of
millimeters.	Put	slightly	differently,	we	would	like	an	account	of	why	it	is	safe	to	use	the	Cauchy	momentum	equation
in	the	sense	that	it	yields	correct	equations	with	the	appropriate	(few)	parameters	for	broadly	different	classes	of
systems—from	elastic	solids	to	viscous	fluids.

From	the	point	of	view	of	Euler's	continuum	recipe,	one	derives	the	equations	for	elastic	solids,	or	the	Navier-
Stokes	equations,	independently	of	any	views	about	the	molecular	or	atomic	makeup	of	the	medium.	(In	the
nineteenth	century	the	question	of	whether	matter	was	atomistic	had	yet	to	be	settled.)

To	ask	for	an	account	of	why	it	is	safe	to	use	the	continuum	recipe	for	constructing	macroscale	models	is	to	ask	for
an	account	of	the	robustness	of	that	methodology.	The	key	physical	fact	is	that	the	bulk	behaviors	of	solids	and
fluids	are	almost	completely	insensitive	to	the	actual	nature	of	the	physics	at	the	smallest	scale.	The	“almost”	here
is	crucial.	The	atomic	details	that	we	do	not	know	(and,	hence,	do	not	explicitly	refer	to)	when	we	employ
continuum	recipe	are	encoded	in	the	small	number	of	phenomenological	parameters	that	appear	in	the	resulting
equations—Young's	modulus,	the	viscosity,	etc.	So	the	answer	to	the	safety	question	will	involve	showing	how	to
determine	the	“fixed	points”	characterizing	broad	classes	of	macroscopic	materials—fixed	points	that	are
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characterized	by	those	phenomenological	parameters.	Recall	the	statement	by	Nelson	cited	above	in	section	2.1.
In	the	context	of	critical	phenomena	and	the	determination	of	the	critical	exponent	β,	this	upscaling	or	connection
between	the	Euler's	discrete	and	continuum	recipes	is	accomplished	by	the	renormalization	group.	In	that	context,
the	idea	of	a	critical	point	and	related	singularities	plays	an	important	role.	But	Nelson's	suggestion	is	that	upscaling
of	this	sort	should	be	possible	even	for	classes	of	systems	without	critical	points.	For	example,	we	would	like	to
understand	why	Young's	modulus	is	the	appropriate	phenomenological	parameter	for	classifying	solids	as	linear
elastic,	despite	rather	severe	differences	in	the	atomic	structure	of	members	of	that	class.	Finding	answers	to
questions	of	this	latter	type	is	the	purview	of	so-called	“homogenization”	theory,	of	which	one	can	profitably	think
the	RG	to	be	a	special	case.

In	the	next	section,	I	will	spend	a	bit	more	time	on	the	RG	explanation	of	the	universality	of	critical	behavior,	filling	in
some	gaps	in	the	discussion	in	section	2.1.	And,	I	will	try	to	say	something	about	general	methodology	of	upscaling
through	the	use	of	homogenization	limits.

5.	A	Modern	Resolution

To	begin,	consider	a	problem	for	a	corporation	that	owns	a	lot	of	casinos.	The	CEO	of	the	corporation	needs	to
report	to	the	board	of	trustees	(or	whomever)	on	the	expected	profits	for	the	corporation.	How	is	she	to	do	it?
Assuming	(contrary	to	fact)	that	casino	gaming	is	fair,	she	would	present	to	the	board	a	Gaussian	or	normal
probability	distribution	showing	the	probabilities	of	various	profits	and	losses,	with	standard	deviations	that	would
allow	for	statistical	predictions	as	to	expected	profits	and	losses.	She	may	also	seek	information	as	to	how	to
manipulate	the	mean	and	variance	so	as	to	guarantee	the	likelihood	of	greater	profits	for	less	risk,	etc.	The
Gaussian	distribution	is	a	function	characterized	by	two	parameters—the	mean	μ	and	the	variance	σ .	Where	will
the	CEO	get	the	values	for	the	mean	and	variance?	Most	likely	by	empirically	investigating	the	actual	means	and
variances	displayed	over	the	past	year	by	the	various	casinos	in	the	corporation.	Consider	figure	7.5.	Should	the
CEO	look	to	the	individual	gambles	or	even	to	collections	of	individual	gambles	of	different	types	in	particular
casinos?	A	bottom-up	reductionist	would	say	that	all	of	the	details	about	the	corporation	as	a	whole	are	to	be	found
by	considering	these	details.	But,	in	fact,	(i)	she	should	not	focus	too	much	on	spatiotemporal	local	features	of	a
single	casino:	suppose	someone	hits	the	jackpot	on	a	slot	machine.	Likely,	many	people	will	run	to	that	part	of	the
casino,	diminishing	profits	from	the	roulette	wheels	and	blackjack	tables,	and	skewing	the	prediction	of	the	actual
mean	and	variance	she	is	after.	Nor	(ii)	would	it	be	wise	to	focus	too	much	on	groups	of	casinos	say	in	a	particular
geographic	area	(such	as	Las	Vegas)	over	casinos	owned	in	another	area	(such	as	Atlantic	City).	After	all,
different	tax	structures	in	these	different	states	and	municipalities	play	an	important	role	as	well.	Such	intermediate
structures	and	environmental	considerations	are	crucial—consider	again	the	bubbles	within	bubbles	structures	that
characterize	the	heterogeneities	at	lower	scales	in	the	case	of	the	universality	of	critical	phenomena.	The	CEO
needs	to	look	at	large	groups	of	collections	of	casinos	where	there	is	evident	scaling	and	self-similarity.	Apparent
scaling	behavior	and	self-similarity	at	large	scales	is	an	indication	of	homogeneity.	Thus,	as	with	our	steel	girder,
empirical	data	(at	large	scales)	is	required	to	determine	the	values	of	the	relevant	parameters.
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Figure	7.5 	Gambles	within	gambles	within	gambles	…

Now	why	should	she	think	that	these	two	parameters—properties	of	collections	of	casinos	offering	different	and
varied	kinds	of	games	(roulette,	poker,	blackjack,	slots,	etc.)—are	the	correct	ones	with	which	to	make	the pre-
sentation	to	the	board?	Equivalently,	why	she	should	employ	a	Gaussian	probability	distribution	(it	is	uniquely
defined	by	the	mean	and	variance)	in	the	first	place,	as	opposed	to	some	other	probability	distribution?	The
answer	is	effectively	provided	by	an	RG	argument	analogous	to	that	which	allows	us	to	determine	the	functional
form	of	the	order	parameter	M	near	criticality—that	it	scales	as	|t| 	near	criticality.	It	is	an	argument	that	leads	us	to
expect	behavior	in	accord	with	the	central	limit	theorem.	There	are	deep	similarities	between	the	arguments	for why	
the	functional	form	with	exponent	β	is	universal	and	why	Gaussian	or	central	limiting	behavior	is	so	ubiquitous. In	
the	former	case,	the	RG	demonstrates	that	various	systems	all	flow	to	a	single	fixed	point	in	an	abstract	space	of
Hamiltonians	or	coupling	constants.	That	fixed	point	determines	the	universality	class	that	is	characterized	by	the
scaling	exponent	β.	Similarly,	the	Gaussian	probability	distribution	is	a	fixed	point	for	a	wide	class	of	probability
distributions	under	a	similar	renormalization	group	transformation.	(For	details	see	Batterman	2010	and	Sinai	1992.)
Thus,	the	answer	to	why	the	mean	μ	and	the	variance	σ 	are	the	relevant	parameters	depends	upon	an	RG,
limiting	argument.	Generalizing,	one	should	expect	related	argument	strategies	to	tell	us	why	the	two	elastic
“constants”	(related	to	Young's	modulus)	are	the	correct	parameters	with	which	to	characterize	the	universality
class	of	elastic	solids.	The	appeal	to	something	like	central	limiting	behavior	is	characteristic	of	homogenization
theory	and	distinguishes	this	line	of	argumentation	from	that	employing	REV	averaging	techniques.

In	fact,	the	difference	between	averaging	and	homogenization	is	related	to	the	difference	between	the	law	of	large
numbers	and	the	central	limit	theorem:	averaging	or	first	order	perturbation	theory	“can	often	be	thought	of	as	a
form	(or	consequence)	of	the	law	of	large	numbers.”	Homogenization	or	second	order	perturbation	theory	“can
often	be	thought	of	as	a	form	(or	consequence)	of	the	central	limit	theorem”	(Pavliotis	and	Stuart	2008,	pp.	6–7).

Here	is	a	brief	discussion	that	serves	to	motivate	these	connections.	Consider	a	sum	function	of	independent	and
identically	distributed	random	variables,	 .	The	sample	average	
converges	to	the	mean	or	expected	value	μ.	The	strong	law	of	large	numbers	asserts	that

As	such	it	tells	us	about	the	first	moment	of	the	random	variable	( —the	average.	The	central	limit	theorem	by
contrast	tells	us	about	the	second	moment	of	the	normalized	sum	( ;	that	is	it	tells	us	about	the	behavior	of
fluctuations	about	the	average	μ.	It	says	that	for	n	→	∞	the	probability	distribution	of	 )	converges
to	the	normal	or	Gaussian	distribution	 ,	with	mean	0	and	variance	 	where	σ	is	the	standard	deviation	of
the	Y 's.

β

2
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Thus	again	we	see	that	in	the	probabilistic	scenario,	as	in	the	case	of	critical	phenomena,	we	must	to	pay	attention
to	the	fact	that	collections	of	gambles	(bubbles)	contribute	to	the	behavior	of	the	system	at	the	macroscale.	Once
again,	we	need	to	pay	attention	to	fluctuations	about	some	average	behavior,	and	not	just	the	average	behavior
itself.

Furthermore,	a	similar	picture	is	possible	regarding	the	upscaling	of	our	modeling	of	the	behavior	of	the	steel	girder
with	which	we	started.	Compare	the	two	cases,	figure	7.6,	noting	that	here	too	only	a	small	number	of
phenomenological	parameters	are	needed	to	model	the	continuum/macroscale	behavior.	(E	is	Young's	modulus
and	I	is	the	area	moment	of	inertia	of	a	cross-section	of	the	girder.)

The	general	problem	of	justifying	the	use	of	Euler's	continuum	recipe	to	determine	the	macroscopic	equation
models	involves	connecting	a	statistical/discrete	theory	in	terms	of	atoms	or	lattice	sites	to	a	hydrodynamic	or
continuum	theory.	Much	effort	has	been	spent	on	this	problem	by	applied	mathematicians	and	materials	scientists.
And,	as	I	mentioned	above,	the	RG	argument	that	effectively	determines	the	continuum	behavior	of	systems	near
criticality	is	a	relatively	simple	example	of	this	general	homogenization	program.

Figure	7.6 	Gaussian	and	steel—few	(macro)	parameters:	[μ,	σ ];	[E,	I]

In	hydrodynamics,	for	example	Navier-Stokes	theory,	there	appear	density	functions,	ρ(x),	that	are	defined	over	a
continuous	variable	x.	These	functions	exhibit	no	atomic	structure	at	all.	On	the	other	hand,	for	a	statistical	theory,
such	as	the	Ising	model	of	a	ferromagnet,	we	have	seen	that	one	defines	an	order	parameter	(a	magnetic	density
function)	M(x)	that	is	the	average	magnetization	in	a	volume	surrounding	x	that	contains	many	lattice	sites	or
atoms.	The	radius	of	the	volume,	L,	is	intermediate	between	the	lattice	constant	(or	atomic	spacing)	and	the cor-
relation	length	ξ:	(a	≪	L	≪	ξ).	As	noted	in	section	2.1	this	makes	the	order	parameter	depend	upon	the	length	L
(Wilson	1974,	p.	123).

A	crucial	difference	between	the	hydrodynamic	(thermodynamic)	theory	and	the	statistical	theory	is	that	the	free
energy	in	the	former	is	determined	using	the	single	magnetization	function	M(x).	In	statistical	mechanics,	on	the
other	hand,	the	free	energy	is	“a	weighted	average	over	all	possible	forms	of	the	magnetization	M(x).”	(Wilson
1974,	p.	123)	This	latter	set	of	functions	is	parameterized	by	the	volume	radius	L.	On	the	statistical	theory	due
originally	to	Landau,	the	free	energy	defined	as	a	function	of	M(x)	takes	the	following	form:	(9)

where	R	and	U	are	(temperature	dependent)	constants	and	B	is	a	(possibly	absent)	external	magnetic	field.	(Wilson
1974,	p.	122)	This	(mean	field)	theory	predicts	the	wrong	value,	1/2,	for	β–the	critical	exponent.	The	problem,	as
diagnosed	by	Wilson,	is	that	while	the	Landau	theory	can	accommodate	fluctuations	for	lengths	λ	〈	L	in	its definition	
of	M	as	an	average,	it	cannot	accommodate	fluctuations	of	lengths	L	or	greater.

A	sure	sign	of	trouble	in	the	Landau	theory	would	be	the	dependence	of	the	constants	R	and	U	on	L.	That
is,	suppose	one	sets	up	a	procedure	for	calculating	R	and	U	which	involves	statistically	averaging	over
fluctuations	with	wavelengths	λ	〈	L.	If	one	finds	R	and	U	depending	on	L,	this	is	proof	that	long-wavelength
fluctuations	are	important	and	Landau's	theory	must	be	modified.	(p.	123)
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The	RG	account	enables	one	to	exploit	this	L-dependence	and	eventually	derive	differential	equations	(RG)	for	R
and	U	as	functions	of	L	that	allow	for	the	calculation	of	the	exponent	β	in	agreement	with	experiment.	The	key	is	to
calculate	and	compare	the	free	energy	for	different	averaging	sizes	L	and	L	+	δL.	One	can	proceed	as	follows :
Divide	M(x)	in	the	volume	element	into	two	parts:	(10)

M 	is	a	hydrodynamic	part	with	wavelengths	of	order	ξ	and	M 	is	a	fluctuating	part	with	wavelength	between	L	and
L	+	δL.	The	former	will	be	effectively	constant	over	the	volume.

By	performing	a	single	integral	over	m—the	scale	factor	in	(10)—we	get	an	iterative	expression	for	the	free	energy
for	the	averaging	size	L	+	δL,	F ,	in	terms	of	the	free	energy	for	the	averaging	size	L:	(11)

In	effect,	one	finds	a	step	by	step	way	to	include	all	the	fluctuations—all	the	physics—that	play	a	role	near
criticality	One	moves	from	a	statistical	theory	defined	over	finite	N	and	dependent	on	L	to	a	hydrodynamic	theory
of	the	continuum	behavior	at	criticality.	“Including	all	of	the	physics”	means	that	the	geometric	structure	of	the
bubbles	within	bubbles	picture	gets	preserved	and	exploited	as	one	upscales	from	the	finite	discrete	atomistic
account	to	the	continuum	model	at	the	scale	of	ξ—the	size	of	the	system.	That	is	exactly	the	structure	that	is	wiped
out	by	the	standard	REV	averaging,	and	it	is	for	that	reason	that	Landau's	mean	field	theory	failed.

5.1	Homogenization

Continuum	modeling	is	concerned	with	the	effective	properties	of	materials	that,	in	many	instances,	are
microstructurally	heterogeneous.	These	microstructures,	as	noted,	are	not	always	to	be	identified	with	atomic	or
lowest	scale	“fundamental”	properties	of	materials.	Simple	REV	averaging	techniques	often	assume	something	like
that,	but	in	general	the	effective,	phenomenological	properties	of	materials	are	not	simple	mixtures	of	volume
fractions	of	different	composite	phases	or	materials.	Many	times	the	microstructural	features	are	geometric	or
topological	including	(in	addition	to	volume	fractions)	“surface	areas	of	interfaces,	orientations,	sizes,	shapes,
spatial	distributions	of	the	phase	domains;	connectivity	of	the	phases;	etc.”	(Torquato	2002,	p.	12).	In	trying	to
bridge	the	scales	between	the	atomic	domain	and	that	of	the	macroscale,	one	needs	to	connect	rapidly	varying
local	functions	of	the	different	phases	to	differential	equations	characterizing	the	system	at	much	larger	scales.
Homogenization	theory	accomplishes	this	by	taking	limits	in	which	the	local	length	(small	length	scale)	of	the
heterogeneities	approaches	zero	in	a	way	that	preserves	(and	incorporates)	the	topological	and	geometric
features	of	the	microstructures.

Most	simply,	and	abstractly,	homogenization	theory	considers	systems	at	two	scales:	ξ,	a	macroscopic	scale
characterizing	the	system	size,	and	a	microscopic	scale,	a,	associated	with	the	microscale	heterogeneities.	There
may	also	be	applied	external	fields	that	operate	at	yet	a	third	scale	Λ.	If	the	microscale,	a,	is	comparable	with	either
ξ	or	Λ,	then	the	modeler	is	stuck	trying	to	solve	equations	at	that	smallest	scale.	However,	as	is	often	the	case,	if	a
≪	Λ	≪	ξ,	then	one	can	introduce	a	parameter

that	is	associated	with	the	fluctuations	at	the	microscale	of	the	heterogeneities—the	local	properties	(Torquato
2002,	pp.	305–6).	In	effect,	then	one	looks	at	a	family	of	functions	u 	and	searches	for	a	limit	u	=	lim 	u 	that	tells
us	what	the	effective	properties	of	the	material	will	be	at	the	macroscale.
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Figure	7.7 	Homogenization	limit	(after	Torquato	2002,	pp.	2,	305–6)

Figure	7.7	illustrates	this.	The	left	box	shows	the	two	scales	a	and	ξ	with	two	phases	of	the	material	K 	and	K .	The
homogenization	limit	enables	one	to	treat	the	heterogeneous	system	at	scale	a	as	a	homogeneous	system	at	scale
ξ	with	an	effective	material	property	represented	by	K .	For	an	elastic	solid	like	the	steel	girder,	K 	would	be	the
effective	stiffness	tensor	and	is	related	experimentally	to	Young's	modulus.	For	a	conductor,	K 	would	be	the
effective	conductivity	tensor	that	is	related	experimentally	to	the	parameter	σ—the	specific	conductance—
appearing	in	Ohm's	law:

where	J	is	the	current	density	at	a	given	location	x	in	the	material	and	E	is	the	electric	field	at	x.	At	the	risk	of	being
overly	repetitive,	note	that	in	these	and	other	cases,	it	is	unlikely	that	the	effective	material	property	K 	will	be	a
simple	average.

Let	me	end	this	brief	discussion	of	homogenization	by	highlighting	what	I	take	to	be	a	very	important	concept	for the	
general	problem	of	upscaling.	This	is	the	concept	of	an	order	parameter	and	related	functions.	The	notion	of	an
order	parameter	was	introduced	in	our	discussion	of	continuous	phase	transitions	in	thermodynamics,	and	the
statistical	mechanical	explanations	of	certain	of	their	features.	In	effect,	the	order	parameter	is	a	microstructure
(mesoscopic	scale)	dependent	function	introduced	to	codify	the	phenomenologically	observed	transition	between
different	states	of	matter.	As	we	have	seen,	the	magnetization	M	represented	in	figure	7.2	is	introduced	to	reflect
the	fact	that	at	the	Curie	temperature	the	systems	goes	from	an	unordered	phase,	above	T 	to	an	ordered	phase,
below	T .	In	this	context,	the	divergences	and	nonanalyticities	at	the	critical	point	play	an	essential	role	in deter-
mining	the	fixed	point	that	characterizes	the	class	of	systems	exhibiting	the	same	scaling	behavior:	M	α	|t| . But,	
again	following	Nelson's	suggestion,	entire	classes	of	systems	such	as	the	class	of	linear	elastic	solids	are	also
characterized	by	“fixed	points”	represented	by	a	relatively	few	phenomenological	parameters	like	Young's
modulus.

It	is	useful	to	introduce	an	order-like	parameter	in	this	more	general	context	of	upscaling	where	criticality	is	not
really	an	issue.	For	example,	consider	the	left	image	in	figure	7.7.	In	upscaling	to	get	to	the	right	image,	one	can
begin	by	defining	indicator	or	characteristic	functions	for	the	different	phases	as	a	function	of	spatial	location
(Torquato	2002,	pp.	24–5).	For	instance,	if	the	shaded	phase	occupies	a	region	U 	in	the	space,	then	an	indicator
function	of	that	phase	is	given	by

One	can	also	introduce	indicator	functions	for	the	interfaces	or	boundaries	between	the	two	phases. 	Much
information	can	then	be	determined	by	investigating	n-point	probability	functions	expressing	the	probabilities	that	n
locations	x ,	…,	x 	are	to	be	found	in	regions	occupied	by	the	shaded	phase.

In	this	way	many	features,	other	than	simple	volume	fraction,	that	exist	at	microscales	can	be	represented	and
employed	in	determining	the	homogenization	limit	for	complex	heterogeneous	systems.	The	introduction	of	such
field	variables,	correlation	functions,	etc.,	allow	us	to	characterize	the	heterogeneous	structures	above	the	atomic
scales.	In	some	cases,	such	as	the	bubbles	within	bubbles	structure	of	the	different	phases	at	a	continuum	phase
transition,	much	of	this	additional	apparatus	will	not	be	necessary.	(Though,	of	course,	it	is	essential	to	take	into
consideration	that	structure	in	that	particular	case.)	But	for	many	more	involved	upscaling	problems	such	as	steel,
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the	additional	mathematical	apparatus	will	be	critical	in	determining	the	appropriate	effective	phenomenological
theory	at	the	continuum	level.	As	we	have	seen	these	microstructures	are	critical	for	an	understanding	of	how	the
phenomenological	parameters	at	the	continuum	scale	emerge.

The	main	lesson	to	take	from	this	all-too-brief	discussion	is	that	physics	at	these	micro/meso-scopic	scales	need	to
be	considered.	Bottom-up	modeling	of	systems	that	exist	across	a	large	range	of	scales	is	not	sufficient	to	yield
observed	properties	of	those	systems	at	higher	scales.	Neither	is	complete	top-down	modeling.	After	all,	we	know
that	the	parameters	appearing	in	continuum	models	must	depend	upon	details	at	lower	scale	levels.	The	interplay
between	the	two	strategies—a	kind	of	mutual	adjustment	in	which	lower	scale	physics	informs	upper	scale	models
and	upper	scale	physics	corrects	lower	scale	models—is	complex,	fascinating,	and	unavoidable.

6.	Conclusion

The	solution	to	the	tyranny	of	scales	problem	has	been	presented	as	one	of	seeing	if	it	is	possible	to	exploit
microstructural	scale	information	(intermediate	between	atomic	scales	and	macroscopic	scales)	to	bridge	between
two	dominant	and	apparently	incompatible	modeling	strategies.	These	are	the	traditional	bottom-up	strategies
associated	with	a	broadly	reductionist	account	of	science	and	pure	top-down	strategies	that	held	sway	in	the
nineteenth	century	and	motivated	the	likes	of	Mach,	Duhem,	Maxwell,	and	others.	Despite	great	progress	in
understanding	the	physics	of	atomic	and	subatomic	particles,	the	persistence	of	continuum	modeling	has	led	to
heated	debates	in	philosophy	about	emergence,	reduction,	realism,	etc.	We	have	canvassed	several	different
attitudes	to	the	apparent	in	eliminability	of	continuum	level	modeling	in	physics.	On	the	one	hand,	there	is	the	view
of	Butterfield	and	others,	that	the	use	of	continuum	limits	represents	nothing	more	than	a	preference	for	the
mathematical	convenience	of	the	infinite.	Another	possible	view,	coming	out	of	the	tyranny	of	scales,	suggests	a
kind	of	skepticism:	we	need	both	atomic	scale	models	and	continuum	scale	models	that	essentially	employ	infinite
idealizations.	However,	a	unified	account	of	applied	mathematics	that	incorporates	both	the	literally	correct	atomic
models	and	the	essentially	idealized	continuum	models	seems	to	be	beyond	our	reach.

I	claim	that	neither	of	these	attitudes	is	ultimately	acceptable.	Butterfield	et	al.	are	wrong	to	believe	that	continuum
models	are	simply	mathematical	conveniences	posing	no	real	philosophical	concerns.	This	position	fails	to	respect
some	rather	deep	differences	between	kinds	of	continuum	modeling.	In	particular,	the	strategies	employed	in	the
renormalization	group	and	in	homogenization	theory	differ	significantly	from	those	employed	in	standard
representative	elementary	volume	(REV)	averaging	scenarios.	The	significance	of	Wilson's	renormalization	group
advance	was	exactly	to	point	out	why	such	REV	methods	fail	and	how	that	failure	can	be	overcome.	The	answer,
as	we	have	seen,	is	to	pay	attention	to	“between”	scale	structures	as	in	the	case	of	the	bubbles	within	bubbles
picture	of	what	happens	at	phase	transitions.	Incorporating	such	structures—features	that	cannot	be	understood
as	averages	over	atomic	level	structures—is	exactly	the	strategy	behind	upscaling	attempts	that	connect	Euler-
type	discrete	modeling	recipes	to	Euler-type	continuum	recipes.	Homogenization	lets	us	give	an	answer	to	why	the
use	of	the	continuum	recipe	is	safe	and	robust.	It	provides	a	satisfactory	justification	for	the	use	of	such	continuum
models,	but	not	one	that	is	“straightforward”	or	pragmatically	motivated.	As	such,	homogenization	provides	the
beginning	of	an	account	of	applied	mathematics	that	unifies	the	radically	different	scale-dependent	modeling
strategies.

I	have	also	tried	here	to	focus	attention	on	a	rather	large	subfield	of	applied	mathematics	that	should	be	of	interest
to	philosophers	working	on	specific	issues	of	modeling,	simulation,	numerical	methods,	and	idealizations.	In
addition,	understanding	the	nature	of	materials	in	terms	of	homogenization	strategies	can	inform	certain	questions
about	the	nature	of	physical	properties	and	issues	about	realism.	For	instance,	we	have	seen	that	many	materials
at	macroscales	are	characterized	by	a	few	phenomenological	parameters	such	as	the	elastic	constants.
Understanding	the	nature	of	materials	requires	understanding	why	these	constants	and	not	others	are	appropriate,
as	well	as	understanding	from	where	the	constants	arise.	One	important	lesson	is	that	many	of	these	material
defining	parameters	are	not	simply	dependent	upon	the	nature	of	the	atoms	that	compose	the	material.	There	is	a
crucial	link	between	structure	at	intermediate	scales	and	observed	properties	at	the	macroscale.

It	may	do	to	end	with	an	nice	statement	(partially	cited	earlier)	from	Rob	Phillips's	excellent	book	Crystals,	Defects,
and	Microstructures	(2001)	expressing	this	point	of	view.

Despite	the	power	of	the	idea	of	a	material	parameter,	it	must	be	greeted	with	caution.	For	many	features	of
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materials,	certain	“properties”	are	not	intrinsic.	For	example,	both	the	yield	strength	and	fracture
toughness	of	a	material	depend	upon	its	internal	constitution.	That	is,	the	measured	material	response	can
depend	upon	microstructural	features	such	as	the	grain	size,	the	porosity,	etc.	Depending	upon	the	extent
to	which	the	material	has	been	subjected	to	prior	working	and	annealing,	these	properties	can	vary
considerably.	Even	a	seemingly	elementary	property	such	as	the	density	can	depend	significantly	upon
that	material's	life	history.	The	significance	of	the	types	of	observations	given	above	is	the	realization	than
many	material	properties	depend	upon	more	than	just	the	identity	of	the	particular	atomic	constituents	that
make	up	that	material.…[M]icrostructural	features	such	as	point	defects,	dislocations,	and	grain
boundaries	can	each	alter	the	measured	macroscopic	“properties”	of	a	material.	(pp.	5–8)

Philosophers	who	insist	that	bottom-up	explanations	of	the	macroscopic	properties	of	materials	are	desirable	to	the
exclusion	of	top-down	modeling	considerations	are,	I	think	being	naive,	similar	to	those	who	maintain	that	top-down
continuum	type	modeling	strategies	are	superior.	The	tyranny	of	scales	appears	to	force	us	to	choose	between
these	strategies.	However,	new	work	on	understanding	the	problem	of	upscaling	or	modeling	across	scales
suggests	that	both	types	of	strategies	are	required.	Our	top-down	considerations	will	inform	the	construction	of
models	at	lower	scales.	And	our	bottom-up	attempts	will	likewise	induce	changes	and	improvements	in	the
construction	of	higher	scale	models.	Mesoscopic	structures	cannot	be	ignored	and,	in	fact,	provide	the	bridges
that	allow	us	to	model	across	scales.

References

Sorin	Bangu.	Understanding	thermodynamic	singularities:	Phase	transitions,	data,	and	phenomena.	Philosophy	of
Science,	76(4):488–505,	2009.

Robert.	W.	Batterman.	Theories	between	theories:	Asymptotic	limiting	intertheoretic	relations.	Synthese,	103:171–
201,	1995.

Robert	W.	Batterman.	Intertheory	Relations	in	Physics.	The	Stanford	Encyclopedia	of	Philosophy,
http://plato.stanford.edu/entries/physics-interrelate/,	2001.

Robert	W.	Batterman.	The	Devil	in	the	Details:	Asymptotic	Reasoning	in	Explanation,	Reduction,	and	Emergence.
Oxford	Studies	in	Philosophy	of	Science.	Oxford	University	Press,	New	York,	2002.

Robert	W.	Batterman.	Critical	phenomena	and	breaking	drops:	Infinite	idealizations	in	physics.	Studies	in	History
and	Philosophy	of	Modern	Physics,	36:225–244,	2005a.

Robert	W.	Batterman.	Response	to	Belot's	“Whose	devil?	Which	details?”.	Philosophy	of	Science,	72(1):154–163,
2005b.

Robert	W.	Batterman.	Encyclopedia	of	Philosophy,	chapter	Reduction.	Macmillan	Reference,	Detroit,	2nd	edition,
2006.

Robert	W.	Batterman.	On	the	explanatory	role	of	mathematics	in	empirical	science.	The	British	Journal	for	the
Philosophy	of	Science,	doi	=	10.1093/bjps/axp018:1–25,	2009.

Robert	W.	Batterman.	Reduction	and	renormalization.	In	Gerhard	Ernst	and	Andreas	Hüttemann,	editors,	Time,
Chance,	and	Reduction:	Philosophical	Aspects	of	Statistical	Mechanics.	Cambridge	University	Press,	Cambridge,
2010.

Robert	W.	Batterman.	Emergence,	singularities,	and	symmetry	breaking.	Foundations	of	Physics,	41(6):1031–1050,
2011.

Gordon	Belot.	Whose	devil?	which	details?	Philosophy	of	Science,	71(1):128–153,	2005.

Jeremy	Butterfield.	Less	is	different:	Emergence	and	reduction	reconciled.	Foundations	of	Physics,	41(6):1065–
1135,	2011a.

Jeremy	Butterfield	and	Nazim	Bouatta.	Emergence	and	reduction	combined	in	phase	transitions.	http://philsci-



The Tyranny of Scales

Page 21 of 23

archive.pitt.edu/id/eprint/8554,	2011b.

Reint	de	Boer.	Theory	of	Porous	Media:	Highlights	in	Historical	Development	and	Current	State.	Springer,	Berlin,
2000.

R.	Feynman,	R.	Leighton,	and	M.	Sands.	The	Feynman	Lectures	on	Physics,	volume	2.	Addison-Wesley,	Reading,
Massachusetts,	1964.

Ulrich	Hornung,	editor.	Homogenization	and	Porous	Media,	volume	6	of	Interdisciplinary	Applied	Mathematics.
Springer,	New	York,	1997.

Leo	P.	Kadanoff.	Scaling,	universality,	and	operator	algebras.	In	C.	Domb	and	M.	S.	Green,	editors,	Phase
Transitions	and	Critical	Phenomena,	volume	5A.	Academic	Press,	San	Diego,	1976.

Leo	P.	Kadanoff.	Statistical	Physics:	Statics,	Dynamics,	and	Renormalization.	World	Scientific,	Singapore,	2000.

Penelope	Maddy.	How	applied	mathematics	became	pure.	The	Review	of	Symbolic	Logic,	1(1):16–41,	2008.

Tarun	Menon	and	Craig	Callender.	Turn	and	face	the	strange	…	Ch-Ch-Changes:	Philosophical	questions	raised	by
phase	transitions,	This	Volume	2012.

Ernest	Nagel.	The	Structure	of	Science:	Problems	in	the	Logic	of	Scientific	Explanation.	Harcourt,	Brace,	&	World,
New	York,	1961.

David	R.	Nelson.	Defects	and	Geometry	in	Condensed	Matter	Physics.	Cambridge	University	Press,	Cambridge,
2002.

John	Norton.	Approximation	and	idealization:	Why	the	difference	matters.	http://philsci-archive.pitt.edu/8622/,
2011.

J.	T.	Oden	(Chair).	Simulation	based	engineering	science—an	NSF	Blue	Ribbon	Report.
www.nsf.gov/pubs/reports/sbes_final_report.pdf,	2006.

Grigorios	A.	Pavliotis	and	Andrew	M.	Stuart.	Multiscale	Methods:	Averaging	and	Homogenization.	Texts	in	Applied
Mathematics.	Springer,	New	York,	2008.

Rob	Phillips.	Crystals,	Defects,	and	Microstructures:	Modeling	across	Scales.	Cambridge	University	Press,
Cambridge,	2001.

Ya	G.	Sinai.	Probability	Theory:	An	Introductory	Course.	Springer-Verlag,	Berlin,	1992.	Trans.:	D.	Haughton.

Lawrence	Sklar.	Physics	and	Chance:	Philosophical	Issues	in	the	Foundations	of	Statistical	Mechanics.	Cambridge
University	Press,	Cambridge,	1993.

Isaac	Todhunter	and	Karl	Pearson	(Ed.).	A	History	of	the	Theory	of	Elasticity	and	of	the	Strength	of	Materials	from
Galilei	to	Lord	Kelvin,	volume	1:	Galilei	to	Saint-Venant	1639–1850.	Dover,	New	York,	1960.

Salvatore	Torquato.	Random	Heterogeneous	Materials:	Microstructure	and	Macroscopic	Properties.	Springer,	New
York,	2002.

Kenneth	G.	Wilson.	Critical	phenomena	in	3.99	dimensions.	Physica,	73:119–128,	1974.

Mark	Wilson.	Mechanics,	classical.	In	Routledge	Encyclopedia	of	Philosophy.	Routledge,	London,	1998.

Notes:

(1)	For	related	discussions,	see	Mark	Wilson's	forthcoming	Physics	Avoidance	and	Other	Essays.

(2)	See	Maddy	(2008)	for	a	forceful	expression	of	this	skeptical	worry.
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(3)	Those	who	think	that	the	renormalization	group	provides	a	bottom-up	explanation	of	the	universality	of	critical
phenomena,	e.g.	Norton	(2011),	are	mistaken,	as	we	shall	see	below.

(4)	“Local”	in	the	sense	that	the	invariance	holds	for	scales	of	several	orders	of	magnitude	but	fails	to	hold	if	we
zoom	in	even	further,	using	x-ray	diffraction	techniques,	for	example.

(6)	I	call	these	intermediate	scales	“microscales”	and	the	structures	at	these	scales	“microstructures”	following
the	practice	in	the	literature,	but	it	may	be	best	to	think	of	them	as	“mesoscopic.”

(7)	These	latter	are	transformations	that	take	place	under	cooling	when	a	relatively	high	symmetry	lattice	such	as
one	with	cubic	symmetry	loses	symmetry	to	become	tetragonal.	Some	properties	of	steel	girders	therefore	depend
crucially	on	dynamical	changes	that	take	place	at	scales	in	between	the	atomic	and	the	macroscopic	(Phillips
2001,	p.	547–8).

(8)	Though	simpler	than	the	case	of	understanding	how	atomic	aspects	of	steel	affect	its	phenomenological
properties,	this	is,	itself,	a	difficult	problem	for	which	a	Nobel	prize	was	awarded.

(9)	This	is	the	limit	in	which	the	number	of	particles	N	in	a	system	approaches	infinity	in	such	a	way	that	the	density
remains	constant—the	volume	has	to	go	to	infinity	at	the	same	time	as	the	number	of	particles.

(10)	See	Batterman	2001	and	2006	for	surveys	of	this	and	more	sophisticated	strategies.

(11)	In	the	present	example,	it	is	hard	indeed	to	see	how	to	define	or	identify	a	nonstatistical	quantity	such	as
temperature	or	pressure	in	thermodynamics	with	a	necessarily	statistical	quantity	or	set	of	quantities	in	the
reducing	statistical	mechanics.	(See	Sklar	1993,	Chapter	9.)

(12)	I	believe	that	the	use	of	the	evaluative	terms	“better,”	“worse,”	and	“tainted”	reflects	an	inherent	prejudice
against	nonreductionist	points	of	view.	In	particular,	as	one	of	the	issues	is	whether	a	more	detailed	(atomic)	theory
is	really	better	for	explanatory,	predictive,	and	modeling	concerns,	this	way	of	speaking	serves	to	block	debate
before	it	can	get	started.

(13)	I	have	taken	this	terminology	from	Hornung	(1997,	p.	1).

(14)	See	Kadanoff	(2000)	and	Batterman	(2002,	2005,	2011)	for	details.

(15)	Systems	above	the	critical	temperature	will	also	appear	homogeneous	as	the	spins	will	be	uncorrelated,
randomly	pointing	up	and	down.

(16)	Thanks	to	Mark	Wilson	for	the	colorful	terminology!

(17)	See	(Phillips	2001).

(18)	Note	that	in	continuum	mechanics,	generally,	a	material	point	or	“material	particle”	is	not	an	atom	or	molecule
of	the	system;	rather	it	is	an	imaginary	region	that	is	large	enough	to	contain	many	atomic	subscales	(whether	or
not	they	really	exist)	and	small	enough	relative	to	the	scale	of	field	variables	characterizing	the	impressed	forces.
Of	course,	as	noted,	Navier's	derivation	did	make	reference	to	atoms.

(19)	I	have	fixed	a	typographical	error	in	these	equations.

(20)	See	Todhunter	and	Pearson	(1960,	pp.	224	and	235–27)	for	details.	Note	also	how	this	limiting	assumption
yields	different	and	correct	results	in	comparison	to	the	finite	atomistic	hypotheses.

(21)	Cited	in	Todhunter	and	Pearson	(1960,	p.	495).

(22)	This	is	the	temptation	promised	by	an	ultimate	reductionist	point	of	view.

(23)	See	Phillips	(2001,	pp.	41–42).

(24)	Proofs	of	the	central	limit	theorem	that	involve	moment	generating	functions	M(t)	for	the	component	random
variables	Y 	make	explicit	that	there	is	an	asymptotic	expansion	in	a	small	parameter	t,	where	truncation	of	the
series	at	first	order	gives	the	mean,	and	truncation	of	the	series	at	second	order	gives	the	fluctuation	term.	Hence
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the	connection	between	these	limit	theorems	and	first	and	second	order	perturbation	theory.	In	fact,	two	limits	are
involved:	the	limit	as	the	small	parameter	t	→	0	and	the	limit	n	→	∞.

(25)	Details	in	Wilson	(1974,	pp.	125–27).

(26)	These	will	be	generalized	distribution	functions.

(27)	See	Torquato	(2002)	for	a	detailed	development	of	this	approach.

(28)	See	Maddy	(2008)	for	a	good	discussion	of	this	point	of	view	among	other	interesting	topics	about	the
applicability	of	mathematics.
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